Bayesian Approaches to Acoustic Modeling: A Review
نویسندگان
چکیده
This paper focuses on applications of Bayesian approaches to acoustic modeling for speech recognition and related speechprocessing applications. Bayesian approaches have been widely studied in the fields of statistics and machine learning, and one of their advantages is that their generalization capability is better than that of conventional approaches (e.g., maximum likelihood). On the other hand, since inference in Bayesian approaches involves integrals and expectations that are mathematically intractable in most cases and require heavy numerical computations, it is generally difficult to apply them to practical speech recognition problems.However, there have beenmany such attempts, and this paper aims to summarize these attempts to encourage further progress on Bayesian approaches in the speech-processing field. This paper describes various applications of Bayesian approaches to speech processing in terms of the four typical ways of approximating Bayesian inferences, i.e., maximum a posteriori approximation, model complexity control using a Bayesian information criterion based on asymptotic approximation, variational approximation, and Markov chain Monte Carlo-based sampling techniques.
منابع مشابه
Bayesian Approaches in Speech Recognition
This paper focuses on applications of Bayesian approaches to speech recognition. Bayesian approaches have been widely studied in statistics and machine learning fields, and one of the advantages of the Bayesian approaches is to improve generalization ability compared to maximum likelihood approaches. The effectiveness for speech recognition is shown experimentally in speaker adaptation tasks by...
متن کاملReview and Classification of Modeling Approaches of Soil Hydrology Processes
To use soil hydrology processe (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numerically...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملReview and Classification of Modeling Approaches of Soil Hydrology Processes
To use soil hydrology processes (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numericall...
متن کاملProbabilistic modeling with Bayesian networks for automatic speech recognition
Bayesian networks are an extremely general prob-abilistic modeling framework, and are increasingly being applied to complex real-world problems. In this paper, we describe the use of a Bayesian network system in large vocabulary isolated word recognition. We brieey review the algorithms and network structures used, and present results showing that signiicant improvements in word error rate resu...
متن کامل